Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
bioRxiv ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38370614

RESUMEN

The Apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in the malaria parasite. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins and no other functional domains have been extensively characterized. One protein domain, which is present in a subset of the ApiAP2 proteins, is the conserved AP2-coincident domain mostly at the C-terminus (ACDC domain). Here we solved for the first time the crystal structure of the ACDC domain from two distinct Plasmodium falciparum ApiAP2 proteins and one orthologue from P. vivax , revealing a non-canonical four-helix bundle. Despite little sequence conservation between the ACDC domains from the two proteins, the structures are remarkably similar and do not resemble that of any other known protein domains. Due to their unique protein architecture and lack of homologues in the human genome, we performed in silico docking calculations against a library of known antimalarial compounds and we identified a small molecule that can potentially bind to any Apicomplexan ACDC domain within a pocket highly conserved amongst ApiAP2 proteins. Inhibitors based on this compound would disrupt the function of the ACDC domain and thus of the ApiAP2 proteins containing it, providing a new therapeutic window for targeting the malaria parasite and other Apicomplexans.

2.
mBio ; 15(1): e0183223, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38059639

RESUMEN

IMPORTANCE: Our study leverages gene editing techniques in Plasmodium falciparum asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter. Molecular features of drug resistance and parasite physiology were examined in depth using proteoliposome-based drug uptake studies and peptidomics, respectively. Energy minimization calculations, showing how these novel mutations might impact the PfCRT structure, suggested a small but significant effect on drug interactions. This study reveals the subtle interplay between antimalarial resistance, parasite fitness, PfCRT structure, and intracellular peptide availability in PfCRT-mediated parasite responses to changing drug selective pressures.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Piperazinas , Quinolinas , Animales , Plasmodium falciparum , Quinolinas/farmacología , Quinolinas/química , Cloroquina/farmacología , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Mutación , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Malaria Falciparum/parasitología
3.
Proc Natl Acad Sci U S A ; 120(17): e2210929120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068227

RESUMEN

Coenzyme A (CoA) biosynthesis is an excellent target for antimalarial intervention. While most studies have focused on the use of CoA to produce acetyl-CoA in the apicoplast and the cytosol of malaria parasites, mitochondrial acetyl-CoA production is less well understood. In the current study, we performed metabolite-labeling experiments to measure endogenous metabolites in Plasmodium falciparum lines with genetic deletions affecting mitochondrial dehydrogenase activity. Our results show that the mitochondrion is required for cellular acetyl-CoA biosynthesis and identify a synthetic lethal relationship between the two main ketoacid dehydrogenase enzymes. The activity of these enzymes is dependent on the lipoate attachment enzyme LipL2, which is essential for parasite survival solely based on its role in supporting acetyl-CoA metabolism. We also find that acetyl-CoA produced in the mitochondrion is essential for the acetylation of histones and other proteins outside of the mitochondrion. Taken together, our results demonstrate that the mitochondrion is required for cellular acetyl-CoA metabolism and protein acetylation essential for parasite survival.


Asunto(s)
Mitocondrias , Plasmodium falciparum , Plasmodium falciparum/genética , Acetilcoenzima A/metabolismo , Acetilación , Mitocondrias/metabolismo , Oxidorreductasas/metabolismo
4.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985570

RESUMEN

Cripowellins from Crinum erubescens are known pesticidal and have potent antiplasmodial activity. To gain mechanistic insights to this class of natural products, studies to determine the timing of action of cripowellins within the asexual intraerythrocytic cycle of Plasmodium falciparum were performed and led to the observation that this class of natural products induced reversible cytostasis in the ring stage within the first 24 h of treatment. The transcriptional program necessary for P. falciparum to progress through the asexual intraerythrocytic life cycle is well characterized. Whole transcriptome abundance analysis showed that cripowellin B "pauses" the transcriptional program necessary to progress through the intraerythrocytic life cycle coinciding with the lack of morphological progression of drug treated parasites. In addition, cripowellin B-treated parasites re-enter transcriptional progression after treatment was removed. This study highlights the use of cripowellins as chemical probes to reveal new aspects of cell cycle progression of the asexual ring stage of P. falciparum which could be leveraged for the generation of future antimalarial therapeutics.


Asunto(s)
Alcaloides de Amaryllidaceae , Antimaláricos , Malaria Falciparum , Animales , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/metabolismo , Alcaloides de Amaryllidaceae/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Estadios del Ciclo de Vida , Eritrocitos
5.
Sci Transl Med ; 15(686): eadc9249, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36888694

RESUMEN

Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/química , Isoleucina-ARNt Ligasa/metabolismo , Plasmodium falciparum/metabolismo , Malaria Falciparum/parasitología , Malaria/tratamiento farmacológico , Resistencia a Medicamentos
6.
J Bacteriol ; 205(1): e0039022, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36622228

RESUMEN

Bacterial lipoproteins are membrane-associated proteins with a characteristic acylated N-terminal cysteine residue anchoring C-terminal globular domains to the membrane surface. While all lipoproteins are modified with acyl chains, the number, length, and position can vary depending on host. The acylation pattern also alters ligand recognition by the Toll-like receptor 2 (TLR2) protein family, a signaling system that is central to bacterial surveillance and innate immunity. In select Listeria monocytogenes isolates carrying certain plasmids, copper exposure converts the lipoprotein chemotype into a weak TLR2 ligand through expression of the enzyme lipoprotein intramolecular acyltransferase (Lit). In this study, we identify the response regulator (CopR) from a heavy metal-sensing two-component system as the transcription factor that integrates external copper levels with lipoprotein structural modifications. We show that phosphorylated CopR controls the expression of three distinct transcripts within the plasmid cassette encoding Lit2, prolipoprotein diacylglyceryl transferase (Lgt2), putative copper resistance determinants, and itself (the CopRS two-component system). CopR recognizes a direct repeat half-site consensus motif (TCTACACA) separated by 3 bp that overlaps the -35 promoter element. Target gene expression and lipoprotein conversion were not observed in the absence of the response regulator, indicating that CopR phosphorylation is the dominant mechanism of regulation. IMPORTANCE Copper is a frontline antimicrobial used to limit bacterial growth in multiple settings. Here, we demonstrate how the response regulator CopR from a plasmid-borne two-component system in the opportunistic pathogen L. monocytogenes directly induces lipoprotein remodeling in tandem with copper resistance genes due to extracellular copper stress. Activation of CopR by phosphorylation converts the lipoprotein chemotype from a high- to low-immunostimulatory TLR2 ligand. The two-component system-mediated coregulation of copper resistance determinants, in tandem with lipoprotein biosynthesis demonstrated here in L. monocytogenes, may be a common feature of transmissible copper resistance cassettes found in other Firmicutes.


Asunto(s)
Listeria monocytogenes , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Receptor Toll-Like 2 , Cobre/metabolismo , Ligandos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Bacterianas/metabolismo
7.
Sci Transl Med ; 14(667): eabo7219, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36260689

RESUMEN

Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kß) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kß in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kß. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kß and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.


Asunto(s)
Antimaláricos , Plasmodium , Animales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Inhibidores mTOR , 1-Fosfatidilinositol 4-Quinasa , Guanosina Monofosfato , Estadios del Ciclo de Vida , Serina-Treonina Quinasas TOR , Sirolimus , Mamíferos
8.
PLoS Pathog ; 18(10): e1010926, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36306287

RESUMEN

The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients. Using isogenic Dd2 parasites expressing contemporary pfcrt alleles with differential in vitro PPQ susceptibilities, we herein characterize the molecular and physiological adaptations that define PPQ resistance in vitro. Using drug uptake and cellular heme fractionation assays we report that the F145I, M343L, and G353V PfCRT mutations differentially impact PPQ and chloroquine efflux. These mutations also modulate proteolytic degradation of host hemoglobin and the chemical inactivation of reactive heme species. Peptidomic analyses reveal significantly higher accumulation of putative hemoglobin-derived peptides in the PPQ-resistant mutant PfCRT isoforms compared to parental PPQ-sensitive Dd2. Joint transcriptomic and metabolomic profiling of late trophozoites from PPQ-resistant or -sensitive isogenic lines reveals differential expression of genes involved in protein translation and cellular metabolism. PPQ-resistant parasites also show increased susceptibility to an inhibitor of the P. falciparum M17 aminopeptidase that operates on short globin-derived peptides. These results reveal unique physiological changes caused by the gain of PPQ resistance and highlight the potential therapeutic value of targeting peptide metabolism in P. falciparum.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , Animales , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Cloroquina/farmacología , Cloroquina/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Antimaláricos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Artemisininas/farmacología , Mutación , Hemoglobinas/metabolismo , Hemo/metabolismo
9.
PLoS Pathog ; 18(10): e1010887, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36223427

RESUMEN

Plasmodium parasites are reliant on the Apicomplexan AP2 (ApiAP2) transcription factor family to regulate gene expression programs. AP2 DNA binding domains have no homologs in the human or mosquito host genomes, making them potential antimalarial drug targets. Using an in-silico screen to dock thousands of small molecules into the crystal structure of the AP2-EXP (Pf3D7_1466400) AP2 domain (PDB:3IGM), we identified putative AP2-EXP interacting compounds. Four compounds were found to block DNA binding by AP2-EXP and at least one additional ApiAP2 protein. Our top ApiAP2 competitor compound perturbs the transcriptome of P. falciparum trophozoites and results in a decrease in abundance of log2 fold change > 2 for 50% (46/93) of AP2-EXP target genes. Additionally, two ApiAP2 competitor compounds have multi-stage anti-Plasmodium activity against blood and mosquito stage parasites. In summary, we describe a novel set of antimalarial compounds that interact with AP2 DNA binding domains. These compounds may be used for future chemical genetic interrogation of ApiAP2 proteins or serve as starting points for a new class of antimalarial therapeutics.


Asunto(s)
Antimaláricos , Proteínas de Unión al ADN , Plasmodium , Humanos , Antimaláricos/farmacología , Antimaláricos/metabolismo , ADN/metabolismo , Plasmodium/efectos de los fármacos , Plasmodium/genética , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ADN/metabolismo
11.
Nat Commun ; 13(1): 2158, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444200

RESUMEN

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Vivax/tratamiento farmacológico , Ratones , Ácido Pantoténico/análogos & derivados , Plasmodium falciparum/genética , Ratas
14.
Nat Microbiol ; 7(2): 289-299, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35087229

RESUMEN

Transmission of Plasmodium falciparum and other malaria parasites requires their differentiation from asexual blood stages into gametocytes, the non-replicative sexual stage necessary to infect the mosquito vector. This transition involves changes in gene expression and chromatin reorganization that result in the activation and silencing of stage-specific genes. However, the genomes of malaria parasites have been noted for their limited number of transcriptional and chromatin regulators, and the molecular mediators of these changes remain largely unknown. We recently identified homeodomain protein 1 (HDP1) as a DNA-binding protein, first expressed in gametocytes, that enhances the expression of key genes critical for early sexual differentiation. The discovery of HDP1 marks a new class of transcriptional regulator in malaria parasites outside of the better-characterized ApiAP2 family. Here, using molecular biology, biochemistry and microscopy techniques, we show that HDP1 is essential for gametocyte maturation, facilitating the necessary upregulation of inner membrane complex components during early gametocytogenesis that gives P. falciparum gametocytes their characteristic shape.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Estadios del Ciclo de Vida/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Diferenciación Sexual/genética , Proteínas de Homeodominio/clasificación
15.
Cell Chem Biol ; 29(2): 191-201.e8, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34348113

RESUMEN

We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Acetato CoA Ligasa/metabolismo , Antimaláricos/química , Inhibidores Enzimáticos/química , Humanos , Malaria/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología
16.
ACS Infect Dis ; 7(10): 2904-2916, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34569223

RESUMEN

Kinase-focused inhibitors previously revealed compounds with differential activity against different stages of Plasmodium falciparum gametocytes. MMV666810, a 2-aminopyrazine, is more active on late-stage gametocytes, while a pyrazolopyridine, MMV674850, preferentially targets early-stage gametocytes. Here, we probe the biological mechanisms underpinning this differential stage-specific killing using in-depth transcriptome fingerprinting. Compound-specific chemogenomic profiles were observed with MMV674850 treatment associated with biological processes shared between asexual blood stage parasites and early-stage gametocytes but not late-stage gametocytes. MMV666810 has a distinct profile with clustered gene sets associated primarily with late-stage gametocyte development, including Ca2+-dependent protein kinases (CDPK1 and 5) and serine/threonine protein kinases (FIKK). Chemogenomic profiling therefore highlights essential processes in late-stage gametocytes, on a transcriptional level. This information is important to prioritize compounds that preferentially compromise late-stage gametocytes for further development as transmission-blocking antimalarials.


Asunto(s)
Antimaláricos , Malaria , Parásitos , Animales , Antimaláricos/farmacología , Humanos , Plasmodium falciparum/genética
17.
Nat Microbiol ; 6(9): 1163-1174, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34400833

RESUMEN

Periodic fever is a characteristic clinical feature of human malaria, but how parasites survive febrile episodes is not known. Although the genomes of Plasmodium species encode a full set of chaperones, they lack the conserved eukaryotic transcription factor HSF1, which activates the expression of chaperones following heat shock. Here, we show that PfAP2-HS, a transcription factor in the ApiAP2 family, regulates the protective heat-shock response in Plasmodium falciparum. PfAP2-HS activates the transcription of hsp70-1 and hsp90 at elevated temperatures. The main binding site of PfAP2-HS in the entire genome coincides with a tandem G-box DNA motif in the hsp70-1 promoter. Engineered parasites lacking PfAP2-HS have reduced heat-shock survival and severe growth defects at 37 °C but not at 35 °C. Parasites lacking PfAP2-HS also have increased sensitivity to imbalances in protein homeostasis (proteostasis) produced by artemisinin, the frontline antimalarial drug, or the proteasome inhibitor epoxomicin. We propose that PfAP2-HS contributes to the maintenance of proteostasis under basal conditions and upregulates specific chaperone-encoding genes at febrile temperatures to protect the parasite against protein damage.


Asunto(s)
Fiebre/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Factores de Transcripción/metabolismo , Antimaláricos/farmacología , Artemisininas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Calor , Humanos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteostasis/efectos de los fármacos , Proteínas Protozoarias/genética , Factores de Transcripción/genética
18.
Front Cell Infect Microbiol ; 11: 691121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178727

RESUMEN

Parasites of the phylum Apicomplexa impact humans in nearly all parts of the world, causing diseases including to toxoplasmosis, cryptosporidiosis, babesiosis, and malaria. Apicomplexan parasites have complex life cycles comprised of one or more stages characterized by rapid replication and biomass amplification, which enables accelerated evolutionary adaptation to environmental changes, including to drug pressure. The emergence of drug resistant pathogens is a major looming and/or active threat for current frontline chemotherapies, especially for widely used antimalarial drugs. In fact, resistant parasites have been reported against all modern antimalarial drugs within 15 years of clinical introduction, including the current frontline artemisinin-based combination therapies. Chemotherapeutics are a major tool in the public health arsenal for combatting the onset and spread of apicomplexan diseases. All currently approved antimalarial drugs have been discovered either through chemical modification of natural products or through large-scale screening of chemical libraries for parasite death phenotypes, and so far, none have been developed through a gene-to-drug pipeline. However, the limited duration of efficacy of these drugs in the field underscores the need for new and innovative approaches to discover drugs that can counter rapid resistance evolution. This review details both historical and current antimalarial drug discovery approaches. We also highlight new strategies that may be employed to discover resistance-resistant drug targets and chemotherapies in order to circumvent the rapid evolution of resistance in apicomplexan parasites.


Asunto(s)
Antimaláricos , Malaria , Parásitos , Animales , Antimaláricos/farmacología , Descubrimiento de Drogas , Resistencia a Medicamentos , Humanos , Malaria/tratamiento farmacológico , Plasmodium falciparum
20.
Epigenetics Chromatin ; 14(1): 19, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794978

RESUMEN

BACKGROUND: The Plasmodium sexual gametocyte stages are the only transmissible form of the malaria parasite and are thus responsible for the continued transmission of the disease. Gametocytes undergo extensive functional and morphological changes from commitment to maturity, directed by an equally extensive control program. However, the processes that drive the differentiation and development of the gametocyte post-commitment, remain largely unexplored. A previous study reported enrichment of H3K36 di- and tri-methylated (H3K36me2&3) histones in early-stage gametocytes. Using chromatin immunoprecipitation followed by high-throughput sequencing, we identify a stage-specific association between these repressive histone modifications and transcriptional reprogramming that define a stage II gametocyte transition point. RESULTS: Here, we show that H3K36me2 and H3K36me3 from stage II gametocytes are associated with repression of genes involved in asexual proliferation and sexual commitment, indicating that H3K36me2&3-mediated repression of such genes is essential to the transition from early gametocyte differentiation to intermediate development. Importantly, we show that the gene encoding the transcription factor AP2-G as commitment master regulator is enriched with H3K36me2&3 and actively repressed in stage II gametocytes, providing the first evidence of ap2-g gene repression in post-commitment gametocytes. Lastly, we associate the enhanced potency of the pan-selective Jumonji inhibitor JIB-04 in gametocytes with the inhibition of histone demethylation including H3K36me2&3 and a disruption of normal transcriptional programs. CONCLUSIONS: Taken together, our results provide the first description of an association between global gene expression reprogramming and histone post-translational modifications during P. falciparum early sexual development. The stage II gametocyte-specific abundance of H3K36me2&3 manifests predominantly as an independent regulatory mechanism targeted towards genes that are repressed post-commitment. H3K36me2&3-associated repression of genes is therefore involved in key transcriptional shifts that accompany the transition from early gametocyte differentiation to intermediate development.


Asunto(s)
Plasmodium falciparum , Procesamiento Proteico-Postraduccional , Expresión Génica , Histonas/metabolismo , Metilación , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...